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1. Introduction

One of the most fascinating conjectures in quantum field theory is the Montonen-Olive du-

ality [1] between electricity and magnetism as the gauge group is exchanged with its dual [2].

It was realised subsequently that this duality is more likely to hold in supersymmetric gauge

theories [3, 4]. If such a theory can be twisted so that part of the supersymmetry remains

on a curved four-manifold, the theory becomes topological in the sense that the partition

function and observables are topological or smooth invariants. In such a case, duality can

both be tested by known mathematical results and predict new ones. A celebrated example

is the twisted N = 2 supersymmetric gauge theory [5], in which the duality of low energy

descriptions [6] yields a relation between Donaldson and Seiberg-Witten invariants [7]. The

N = 4 supersymmetric gauge theory is believed to have exact electric-magnetic duality,

or S-duality [4]. It has three inequivalent twists [8, 9]. One of the two twists in [8] is the

Vafa-Witten theory [10], whose partition functions are the generating functions of the Eu-

ler number of instanton moduli spaces. These partition functions depend on the discrete

fluxes of ’t Hooft [11] and they transform under the modular group SL(2,Z) for simply

laced gauge groups. This sharpened S-duality conjecture [10] impose stringent constraints

on the Euler number of moduli spaces and has been a fruitful source of development in

both topology and S-duality. Recently, there has been much interest in the third twist [9]

for its relation to the geometric Langlands programme [12 – 15].

In this paper, we revisit the Vafa-Witten theory with an emphasis on the roles of

Langlands duals. While much progress has been made when the gauge group is simply

laced, both in physics [16 – 20] and in mathematics [21 – 25], there has been almost no

attempt in studying the Vafa-Witten theory in the non-simply laced case (see however [26]).
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The latter differs from the simply laced case in several crucial ways. First, as the gauge

group is distinct from its dual, we need to consider simultaneously two sets of discrete

fluxes and hence two sets of partition functions. Second, the Z2-duality of electricity and

magnetism is not part of the modular group, but of the Hecke group [27 – 29], which has

different relations on the generators. Based on the transformations of theta functions [30]

and their appearance in the blow-up formulae [26], we propose explicit transformations of

the partition functions with various discrete fluxes under the Hecke group. This would

be the counterpart, when the gauge group is non-simply laced, of the sharpened S-duality

conjecture of Vafa and Witten [10].

The organisation of the paper is as follows. In section 2, we review ’t Hooft’s discrete

electric and magnetic fluxes [11] and their role in canonical and path integral quantisation.

Given an arbitrary simple gauge group, we choose a subset of permitted discrete fluxes

so that under S-duality, the discrete electric and magnetic fluxes are interchanged. In

section 3, we consider Vafa-Witten theory for simply laced gauge groups. The sharpened

S-duality conjecture [10] specifies how the partition functions with various discrete fluxes

transform under the modular group. From this and the above selection of discrete fluxes for

arbitrary gauge groups, we deduce the usual Z2-duality which exchanges the gauge group

and its Langlands dual. To compare with the non-simply laced case, we summarise the

relevant mathematical results, especially the blow-up formulae [22, 10, 24, 26], in which

the universal factors contain theta functions constructed from the coroot lattice [26] and

the Dedekind eta function. In section 4, we study Vafa-Witten theory for non-simply

laced gauge groups. There are two sets of partition functions which transform under the

Hecke group. To find the explicit representation, we start from the theta functions whose

transformations under the Hecke group are known [30]. Their appearance in the blow-

up formulae is then used to determine how the generators of the Hecke group act on

the partition functions. Our result contains new phase factors which are different from

those proposed in [10]. We then explain the consequences on the blow-up formulae and

compactification of moduli spaces. Finally, we check that the action of the generators

indeed defines a representation of the Hecke group. In section 5, we discuss some possible

future directions from this work. We collect in appendix A some facts on Lie algebras, Lie

groups, their Langlands duals, invariant bilinear forms and Coxeter, dual Coxeter numbers.

In appendix B, we review the geometry of fractional instanton numbers [10] in the presence

of discrete fluxes for arbitrary gauge groups. We also mention some congruence properties

of the signature of four-manifolds and the dimension of instanton moduli spaces.

2. Gauge theory with discrete electric and magnetic fluxes

We consider gauge theories on a Riemannian four-manifoldX with a compact, simple gauge

group G. The fields in such a theory are the gauge potential A, which is a connection on a

principal G-bundle P and the matter fields, denoted by ψ collectively, which are sections

of various associated bundles of P . The action is

S[A,ψ] =

∫

X

[
1

e2
(F | ∗ F ) +

√
−1 θ

8π2
(F |F ) + · · ·

]
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=

∫

X

√
−1

4π

[
τ̄ (F+|F+) + τ (F−|F−)

]
+ · · · , (2.1)

where the terms with ψ and the coupling to A are omitted. Here, the pairing on the

curvature 2-form is given by the bilinear form (·|·) on g explained in appendix A and the

wedge product on forms. The gauge coupling constant e and the θ angle combine as a

complex coupling τ = θ/2π + 4π
√
−1 /e2 in the upper-half plane.

In quantum theory, we integrate over A and ψ. When G is simply connected, the

instanton numbers are summed over in the path integral in order to be compatible with

the Hamiltonian formalism. When G is not simply connected, there are additional char-

acteristic classes and the instanton numbers are no longer integers [10]. If G = Gad, we

have w2(P ) ∈ H2(X,Z), where Z is the centre of the universal covering group G̃, and an

instanton number k satisfying (B.4). Fixing w2(P ) = v, the partition function is

ZX,v(τ) =
∑

k∈Z− 1
2
(v|v)

1

vol(Gk,v)

∫

k(P )=k
w2(P )=v

DADψ e−S[A,ψ], (2.2)

where Gk,v is the group of gauge transformations on a bundle P with the prescribed topol-

ogy. Henceforth, we omit the subscript X in ZX,v(τ) unless confusion occurs. Because of

the fractional instanton numbers, we have

Zv(τ + 1) = e−π
√
−1 (v|v) Zv(τ). (2.3)

To relate to canonical quantisation, we consider the case X = S1 × Y , where S1 is the

time direction and Y is a spatial three-manifold. We write v = (a,m) according to the

decomposition [12]

H2(X,Z) ∼= H1(Y,Z) ⊕H2(Y,Z). (2.4)

Following [11], m is called a discrete magnetic flux and an element e ∈ H1(Y,Z)∧ =

Hom(H1(Y,Z), U(1)) is called a discrete electric flux. For each pair (e,m), the partition

function

Ze,m(τ) =
∑

a∈H1(Y,Z)

e(a)Zv=(a,m)(τ) (2.5)

corresponds to some Hilbert space He,m in the Hamiltonian formalism.

For G = G̃ and G = Gad, the Hilbert spaces are, respectively, HG̃ = ⊕e∈H1(Y,Z)∧He,0

and HGad
= ⊕m∈H2(X,Z)H0,m [12]. The corresponding partition functions are

ZG̃(τ) =
∑

e∈H1(Y,Z)∧

Ze,m=0(τ) = |Z|b1(Y )Zv=0(τ), (2.6)

ZGad
(τ) =

∑

m∈H2(X,Z)

Ze=0,m(τ) =
∑

a∈H1(Y,Z)

m∈H2(Y,Z)

Zv=(a,m)(τ). (2.7)

For a general gauge group G with the same Lie algebra g, we choose the partition function

as

ZG(τ) =
∑

e|
H1(Y,π1(G))=1

m∈H2(Y,π1(G))

Ze,m(τ). (2.8)

– 3 –
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In addition to having a Hilbert space

HG =
⊕

e|
H1(Y,π1(G))=1

m∈H2(Y,π1(G))

He,m, (2.9)

this prescription has the following two (somewhat related) advantages. First, the partition

function can be written as

ZG(τ) = |Z(G)|b1(Y )
∑

a∈H1(Y,π1(G))

m∈H2(Y,π1(G))

Zv=(a,m)(τ) = |Z(G)|−1+b1(X)
∑

v∈H2(X,π1(G))

Zv(τ),

(2.10)

an expression which is manifestally relativistic. (See [10] for a derivation of the factor

|Z(G)|−1+b1(X) without the space-time splitting.) Second, the restriction on e in (2.8) is

equivalent to e ∈ H1(Y,Z(G))∧. By Poincaré duality, H2(Y, π1(
LG)) ∼= H1(Y,Z(G))∧,

H1(Y,Z(LG))∧ ∼= H2(Y, π1(G)). So when G is replaced by its Langlands dual LG, the

spaces of e and m are exchanged. This makes S-duality possible.

3. Vafa-Witten theory for simply laced gauge groups: modular invariance

In [10], Vafa and Witten studied S-duality in twisted N = 4 supersymmetric gauge theory.

Such a theory is topological and can be defined on any curved four-manifold X while

maintaining part of the supersymmetry. With certain vanishing theorems [10], the partition

function captures the Euler number of instanton moduli spaces. Recall that the topology

of a Gad-bundle P over a four-manifold X is determined by w2(P ) ∈ H2(X,Z) and an

instanton number k(P ) satisfying (B.4). Fixing w2(P ) = v, the partition function is [10]

Zv(τ) = q−s
∑

k∈Z− 1
2
(v|v)

χ(Mk,v ) qk, (3.1)

where q = e2π
√
−1 τ and Mk,v = Mk,v(X) is the moduli space of anti-self-dual instantons

on X with the prescribed topology. This is the generating function of the Euler number of

certain compactification of Mk,v. The factor q−s comes from the modification of the action

to ensure S-duality in curved space. Consequently, even when v = 0 and k ∈ Z, Zv(τ) is

not invariant under τ 7→ τ + 1. As the theory is topological, s is a linear combination of

the Euler number χ and the signature σ of X.

For simplicity, we assume that H1(X,Z) has no |Z|-torsion as in [10]. Then

H2(X,Z) ∼= Zb2 , where bi = bi(X) is the ith Betti number of X. When g is simply

laced, the sharpened S-duality conjecture of Vafa and Witten [10] is that

Zv

(
−1

τ

)
= ± 1

|Z|b2/2
(

τ√
−1

)w/2 ∑

u∈H2(X,Z)

e2π
√
−1 (v|u)Zu(τ) (3.2)

for some modular weight w. We can eliminate the factor (τ/
√
−1 )w by defining

Ẑv(τ) = η(τ)−wZv(τ), (3.3)

– 4 –
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where η(τ) = q1/24
∑∞

n=1(1 − qn) is the Dedekind eta function. Then the transformations

become
Ẑv(τ + 1) = e−π

√
−1 c/12−π

√
−1 (v|v) Ẑv(τ),

Ẑv

(
−1

τ

)
= ± 1

|Z|b2/2
∑

u∈H2(X,Z)

e2π
√
−1 (v|u) Ẑu(τ),

(3.4)

where c = 24s + w is also a linear combination of χ and σ.

The original Montonen-Olive duality conjecture [1] is a consequence of the sharpened

S-duality (3.4). The formula of Ẑv(−1/τ) in (3.4) when v = 0 already shows the duality

between G̃ and LG̃ = Gad [10, 12]. For any gauge group G with the same Lie algebra g,

the partition function is, according to (2.10),

ẐG(τ) = |Z(G)|−1+b1
∑

v∈H2(X,π1(G))

Ẑv(τ). (3.5)

Thus we have

ẐG

(
−1

τ

)
= |Z(G)|−1+b1

∑

v∈H2(X,π1(G))

±|Z|−b2/2
∑

u∈H2(X,Z)

e2π
√
−1 (u|v) Ẑv(τ)

= ±|Z(G)|−χ/2 |π1(G)|b2/2
∑

v∈H2(X,π1(LG))

Ẑv(τ)

= ±|Z(G)|−χ/2 |Z(LG)|χ/2 ẐLG(τ). (3.6)

That is, the quantum theory with gauge group G and coupling −1/τ is the same as that

with gauge group LG and coupling τ . This is the Montonen-Olive duality for a general

(simply laced) gauge group.

The constants c, w, s and the sign in (3.4) are fixed by the requirement that (3.4)

defines a representation of the modular group and by explicit calculations of examples

of four-manifolds. Recall that the modular group Γ = SL(2,Z) is generated by T =(1 1
0 1

)
: τ 7→ τ + 1 and S =

(0 −1
1 0

)
: τ 7→ −1/τ satisfying the relations

S2 = (ST )3 ∈ Z(Γ ), S4 = I. (3.7)

The argument in [10] for SU(n) shows that for any simply laced gauge group, the matrix

representations of T and S given by (3.4),

Tuv = e−π
√
−1 c/12−π

√
−1 (v|v) δuv, Suv = ±|Z|−b2/2 e2π

√
−1 (u|v), (3.8)

satisfy the relations in (3.7) if

c = rgχ mod 4 and ± = (−1)rg(χ+σ)/4. (3.9)

Here rg(χ + σ)/4 ∈ Z by (B.8) because the Euler number of Mk,v vanishes unless its

dimension is even. In fact, it is believed that if the gauge group is simply laced, then [10,

17, 19]

s = (rg + 1)χ/24, w = −χ, c = rgχ. (3.10)

– 5 –



J
H
E
P
0
5
(
2
0
0
8
)
0
0
9

This agrees with, for SU(2) and more generally for SU(n), the calculations of K3 [31, 10,

16, 20], CP 2 [21, 22], 1
2K3 (rational elliptic surfaces) [16, 23] and rational surfaces [25].

It also agrees with the physics calculation of Kähler surfaces whose canonical divisor is a

disjoint union of smooth curves [10, 17]. For other types of simply laced gauge groups, the

partition functions have been studied for K3 and T 4/Z2 [18, 19].

The transformations (3.2), (3.4) with (3.10) is also consistent with the blow-up for-

mulae. Let X be an algebraic surface and X̃, its blow-up at a point. Topologically, X̃

is the connected sum of X and CP 2. Thus H2(X̃,Z) ∼= H2(X,Z) ⊕ H2(CP 2,Z), where

H2(CP 2,Z) has one generator e with the pairing e2 = −1. So the discrete fluxes ṽ on X̃

and v on X are related by ṽ = (v, a ⊗ e), where a ∈ Z ∼= Λ∗/Λ∨. Blow-up formulae relate

the partition functions of the theories on X and those on X̃. The obvious generalisation

of the SU(2) case [10] to any simply laced gauge group (see [25, 17] for SU(n)) is

ẐX̃,ṽ(τ) = θ̂a(τ) ẐX,v(τ), (3.11)

where θ̂a(τ) = η(τ)−rgθa(τ) and

θa(τ) =
∑

x∈Λ∨+a

eπ
√
−1 (x|x)τ . (3.12)

Note that θ̂a(τ) (a ∈ Z) are the level 1 affine characters [32, 33] and transform under the

modular group Γ . The representation of Γ on {ẐX̃,ṽ} is the tensor product of those on

{ẐX,v} and on {θ̂a}.
Mathematically, (3.11) can be written more explicitly as, for ṽ = (v, a⊗ e),

∑

k∈Z− 1
2
(ṽ|ṽ)
χ(Mk,ṽ(X̃) ) qk =

q(rg+1)/24

η(τ)rg+1
θa(τ)

∑

k∈Z− 1
2
(v|v)
χ(Mk,v(X) ) qk. (3.13)

In fact, the factorisation (3.11) for G = SU(2) or SO(3) was motivated by Yoshioka’s

work [22] (when X is projective and a = 0) and the requirement of S-duality [10]. Li

and Qin [24] proved, again when G = SU(2) or SO(3), that (3.13) holds for any smooth

algebraic surface X and a ∈ Z, if Mk,v is the Gieseker compactification of Mk,v. The

power of the Dedekind eta function in the denominator comes from the boundary compo-

nents of the moduli spaces included during compactification. Ignoring their contributions,

Kapranov [26] showed that
∑

k∈Z

χ(Mk,0(X̃)) qk = θ0(τ)
∑

k∈Z

χ(Mk,0(X)) qk (3.14)

for any (possibly non-simply laced) gauge group. This provides further support for the

appearance of θa(τ) in the universal factor on the right hand side of (3.13).

4. Vafa-Witten theory for non-simply laced gauge groups: the Hecke

group

For non-simply laced gauge groups, duality exchanges the parameter τ with −1/ngτ [27 –

29], where ng is the ratio of the squared lengths of long and short roots. The transformations

– 6 –
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T =
(
1 1
0 1

)
: τ 7→ τ + 1 and S =

( 0 −1/
√
ng√

ng 0

)
: τ 7→ −1/ngτ generate the Hecke group

G(
√
ng) ⊂ SL(2,R) and satisfy the relations

S2 = (ST )2ng ∈ Z(G(
√
ng)), S4 = 1. (4.1)

There are two sets of partition functions. In addition to {Zu(τ)}u∈H2(X,Z) given by (3.1),

we have {Zµ(τ)}µ∈H2(X,LZ), where

Zµ(τ) = q−š
∑

k∈Z− 1
2
(µ|µ)

χ(Mk,µ ) qk (4.2)

is the partition function of the theory with gauge group (LG)ad and discrete flux µ ∈
H2(X, LZ). Here LZ ∼= LΛ∗/LΛ∨ is the centre of L̃G. The generator T : τ 7→ τ+1 transforms

within each of the sets {Zu(τ)} and {Zµ(τ)} while S: τ 7→ −1/ngτ interchanges them.

To find how the Hecke group acts on the two sets of partition functions, we consider the

theta functions on which the action of the Hecke group is known explicitly [30]. When G

is non-simply laced, besides {θa(τ)}a∈Z in (3.12), there is another set {θα(τ)}α∈LZ , where

θα(τ) =
∑

ξ∈(LΛ)∨+α

eπ
√
−1 (ξ|ξ). (4.3)

These theta functions are different from those in the affine characters [32, 33], which are

sums over the lattice generated by the long roots and transform under the modular group.

With (3.12) and (4.3), Poisson summation yields [30]

ϑa

(
− 1

ngτ

)
=
n
rlong
g /2

|Z|1/2
(

τ√
−1

)rg/2 ∑

α∈LZ
e−2π

√
−1 〈α,a〉/√ng ϑα(z, τ),

ϑα

(
− 1

ngτ

)
=
n
rshort/2
g

|Z|1/2
(

τ√
−1

)rg/2 ∑

u∈Z
e−2π

√
−1 〈α,a〉/√ng ϑa(z, τ).

(4.4)

Thus we encounter the Hecke group. Let

ϑ̂a(τ) = η(τ)−rlong η(ngτ)
−rshort ϑa(τ),

ϑ̂α(τ) = η(τ)−rshort η(ngτ)
−rlong ϑα(τ),

(4.5)

where rlong and rshort are the numbers of long, short simple roots of g, respectively.

Then [30]

ϑ̂a(τ + 1) = e−π
√
−1ngrg ȟ(L

g)/12h(g)+π
√
−1 (a|a) ϑ̂a(τ),

ϑ̂α(τ + 1) = e−π
√
−1ngrg ȟ(g)/12h(g)+π

√
−1 (α|α) ϑ̂α(τ),

ϑ̂a

(
− 1

ngτ

)
=

1

|Z|1/2
∑

α∈LZ
e−2π

√
−1 〈α,a〉/√ng ϑ̂α(τ),

ϑ̂α

(
− 1

ngτ

)
=

1

|Z|1/2
∑

a∈Z
e−2π

√
−1 〈α,a〉/√ng ϑ̂a(τ).

(4.6)

– 7 –
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The transformations of Zv(τ) and Zµ(τ) under T are obvious. Following (3.2) and (4.4),

we assume that the partition functions transform under S according to

Zu

(
− 1

ngτ

)
=
n
wlong/2
g

|Z|b2/2
(

τ√
−1

)w/2 ∑

µ∈H2(X,LZ)

e2π
√
−1 〈µ|u〉/√ng Zµ(τ),

Zµ

(
− 1

ngτ

)
=
n
wshort/2
g

|Z|b2/2
(

τ√
−1

)w/2 ∑

u∈H2(X,Z)

e2π
√
−1 〈µ|u〉/√ng Zu(τ),

(4.7)

where w = wlong + wshort. Since S exchanges two sets of partition functions, there is no

need for the ± sign that was present in (3.2). As in (3.3) and (4.5), let

Ẑu(τ) = η(τ)−wlong η(ngτ)
−wshort Zu(τ),

Ẑµ(τ) = η(τ)−wshort η(ngτ)
−wlong Zµ(τ).

(4.8)

Then the transformations under T and S become

Ẑu(τ + 1) = e−π
√
−1 c/12−π

√
−1 (u|u) Ẑu(τ), (4.9)

Ẑµ(τ + 1) = eπ
√
−1 č/12−π

√
−1 (µ|µ)Ẑµ(τ), (4.10)

Ẑu

(
− 1

ngτ

)
=

1

|Z|b2/2
∑

µ∈H2(X,LZ)

e2π
√
−1 〈µ,u〉/√ng Ẑµ(τ), (4.11)

Ẑµ

(
− 1

ngτ

)
=

1

|Z|b2/2
∑

u∈H2(X,Z)

e2π
√
−1 〈µ,u〉/√ng Ẑv(τ), (4.12)

where c = 24s+wlong + ngwshort and č = 24š+wshort + ngwlong are linear combinations of

χ and σ. We have, just as (3.6),

ẐG

(
− 1

ngτ

)
= |Z(G)|−χ/2 |Z(LG)|χ/2 ẐLG(τ), (4.13)

recovering the original Montonen-Olive duality [1].

In [10], it was proposed that for non-simply laced groups, formula (3.3) holds if c =

c1(g)χ, where c1(g) = dim g/(1 + ȟ(g)) is the central charge of the WZW model at level

1 [33]. We would like to suggest different values of c and č so as to be compatible with the

action of the Hecke group. We claim that (4.9) holds with

c = ngrg
ȟ(Lg)

h(g)
χ = (rlong + ng rshort)χ, č = ngrg

ȟ(g)

h(g)
χ = (rshort + ng rlong)χ. (4.14)

As χ(X̃) = χ(X) + 1, this is consistent with the factorisation

ẐX̃,ũ(τ) = θ̂a(τ) ẐX,u(τ), ẐX̃,µ̃(τ) = θ̂α(τ) ẐX,µ(τ), (4.15)

where ũ = (u, a ⊗ e), µ̃ = (µ, α ⊗ e). The partitions functions of X̃ transform under the

Hecke group in the tensor product representation of those of X and the theta functions.
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With the lack of mathematical examples in the non-simply laced case, it is not possible

to fix the constants s, š, wlong, wshort uniquely. A possible solution is

wlong = −rlong

rg
χ, wshort = −rshort

rg
χ, s =

1 + r−1
g

24
c, š =

1 + r−1
g

24
č. (4.16)

Then the blow-up formulae are

∑

k∈Z− 1
2
(ũ|ũ)

χ(Mk,ũ(X̃) ) qk =

(
q(rlong+ngrshort)/24

η(τ)rlong η(ngτ)rshort

)1+r−1
g

θa(τ)
∑

k∈Z− 1
2
(u|u)

χ(Mk,u(X) ) qk,

∑

k∈Z− 1
2
(µ̃|µ̃)

χ(Mk,µ̃(X̃) ) qk =

(
q(rshort+ngrlong)/24

η(τ)rshort η(ngτ)rlong

)1+r−1
g

θα(τ)
∑

k∈Z− 1
2
(µ|µ)

χ(Mk,µ(X) ) qk.

(4.17)

While the appearance of the theta functions matches [26], the fractional powers of the

eta functions suggest that a more sophisticated compactification of the moduli spaces is

necessary when the group is non-simply laced. It is possible to achieve integer powers at

the expense of losing the symmetry between g and Lg. (For example, the first factors on

the right hand sides of the two equations in (4.17) can be replaced by q(rg+1)/24/η(τ)rg+1

and qng(rg+1)/24/η(ngτ)
rg+1, respectively.) Then the moduli spaces Mk,u and Mk,µ would

have to be compactified differently.

We check that with the choices of c and č in (4.14), the matrices

Tuv = e−π
√
−1 c/12−π

√
−1 (v|v) δuv, Ťµν = e−π

√
−1 č/12−π

√
−1 (µ|µ) δµν ,

Sµu = |Z|−b2/2 e2π
√
−1 〈µ,v〉/√ng = Šuµ

(4.18)

(u, v ∈ H2(X,Z), µ, ν ∈ H2(X, LZ)) from (4.9) indeed satisfy the relations in (4.1) for the

Hecke group. For non-simply laced simple Lie algebras, the centre Z is either Z2 (for Br
and Cr) or trivial (for F4 and G2). Therefore all u and µ are two-torsions and S2 and Š2

are the identity matrix. We show that (ŠŤ ST )ng is also the identity matrix.

First, the contribution of new phase factors in (4.9) involving c and č is

(e−π
√
−1 c/12e−π

√
−1 č/12)ng = e−π

√
−1ng(ng+1)rg χ/12 (4.19)

by using the second identity in (A.4). If g is of type F4 or G2, then Z = {1} and all

the matrices concerned are scalars. It is easy to check that (4.19) is equal to 1 in both

cases. (If c = c1(g)χ, then (4.19) would be e4π
√
−1χ/15 for F4 and e3π

√
−1χ/5 for G2.)

In this case, each of the two sets of partition functions contain one element, Zu=0 and

Zµ=0, respectively, which transform under the Hecke group. Since the Langlands dual

group is isomorphic to the original group, the two partition functions are equal unless the

compactifications Mk,u=0 and Mk,µ=0 are different (a possibility suggested above).

If g is of type Br or Cr, say Cr, then the discrete fluxes are u = x⊗ λ̌s and µ = y⊗ λ̌1

for some x, y ∈ H2(X,Z2). Here λ̌s and λ̌1 are, respectively, the fundamental coweights

corresponding to the spinor representation of Br and the defining representation of Cr.

(Both representations are miniscule.) A straightforward calculation yields

(u|u) = r x2/2, (µ|µ) = y2, 〈µ, u〉/
√

2 = x · y mod 2, (4.20)
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where the pairing x · y is explained in appendix B. Using the Wu formula (B.5), we have

(ŠŤ ST )xy = e−π
√
−1 rχ/4 2−b2

∑

z∈H2(X,Z2)

eπ
√
−1x·ze−π

√
−1 z2eπ

√
−1 z·ye−π

√
−1 r y2/2

= e−π
√
−1 (χ/4+r y2/2) δx+y,w2 (4.21)

and

((Š Ť ST )2)xy = e−π
√
−1 r(χ+w2

2)/2 δxy. (4.22)

The phase factor on the right hand side is 1 by (B.6) and (B.8).

5. Conclusions

When the gauge group is non-simply laced, we proposed how the partition functions of

the Vafa-Witten theory transform under the generators of the Hecke group. Our approach

was to use the known transformation of the theta functions and their appearance in the

blow-up formulae. As a consistency check, we verified that these transformations indeed

define a representation of the Hecke group on two sets of partition functions for the gauge

group and its Langlands dual. However, much remains to be done. One of the important

problems is to compute the partition functions, either mathematically for simple exam-

ples of four-manifolds such as K3 and rational surfaces or by mass deformation for Kähler

surfaces whose canonical divisor is a disjoint union of smooth curves. Another is to clar-

ify the meaning of fractional powers of the eta functions in the blow-up formulae using

the appropriate compactification of moduli spaces. We leave these questions for future

exploration.
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A. Notations and facts of Lie groups and Lie algebras

In this paper, G is a simple, connected, compact Lie group with Lie algebra g. Let T be a

maximal torus of G with Lie algebra t. Then T = t/2π
√
−1 ℓ for some lattice ℓ ⊂

√
−1 t.

Let ∆ ⊂
√
−1 t∗ be the root system and ∆∨ = {α∨|α ∈ ∆} ⊂

√
−1 t, the coroot system.

Denote by Λ and Λ∨ the root and coroot lattices, respectively. Then the weight and

coweight lattices are (Λ∨)∗ and Λ∗. We have the inclusions [34], §IX.4.9

Λ∨ ⊂ ℓ ⊂ Λ∗ ⊂
√
−1 t, Λ ⊂ ℓ∗ ⊂ (Λ∨)∗ ⊂

√
−1 t∗. (A.1)

Let G̃ be the universal covering group of G. Its centre is Z ∼= Λ∗/Λ∨. The adjoint

group Gad = G̃/Z has π1(Gad) = Z and a trivial centre. In general, π1(G) ∼= ℓ/Λ∨ and
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Z(G) ∼= Λ∗/ℓ. The maximal tori of G̃ and Gad are, respectively, T̃ = t/2π
√
−1Λ∨ and

Tad = t/2π
√
−1Λ∗.

We fix an inner product (·|·) on
√
−1 g such that the long roots are of square length 2.

Let ng be the ratio of square lengths of long and short roots. g is simply laced if all roots

are of the same length, in which case we set ng = 1. Otherwise, g is non-simply laced and

ng is either 2 or 3. The Langlands dual Lg of g is the Lie algebra whose root system is

isomorphic to ∆∨. To keep the same normalisation on the inner product, the root system

of Lg should be L∆ = n
−1/2
g ∆∨. Thus its (co)root and (co)weight lattices are

LΛ = n
−1/2
g Λ∨, (LΛ)∨ = n

1/2
g Λ, ((LΛ)∨)∗ = n

−1/2
g Λ∗, (LΛ)∗ = n

1/2
g (Λ∨)∗. (A.2)

The Lie algebra Lg determines a simply connected Lie group L̃G whose centre is LZ ∼=
(LΛ)∗/(LΛ)∨ ∼= (Λ∨)∗/Λ and is isomorphic to Z∧ = Hom(Z, U(1)), the character group of

Z. The Langlands dual LG of the group G is defined by specifying π1(
LG) as the subgroup

of characters on Z that is trivial on π1(G). We have π1(
LG) ∼= Z(G)∧ and Z(LG) = π1(G)∧.

In particular, LG̃ = (LG)ad and L(Gad) = L̃G.

The centre Z is closely related to the miniscule representations of Lg. A representation

of g is miniscule if the weights form a single orbit under the Weyl group action. If so,

the highest weight is called a miniscule weight. A miniscule weight is fundamental, but

not conversely. The miniscule weights are in one-to-one correspondence with the non-

zero elements of (Λ∨)∗/Λ, by sending the weight to the coset it represents [34], §VIII.7.3.

Thus there is a bijection between the set of miniscule and zero weights and LZ [30]. A

representation of G is miniscule if the induced representation of g is so. There is a bijection

between the set of miniscule and trivial representations of G and π1(
LG) ∼= Z(G)∧ [30].

We mention some results related to the normalised inner product (·|·). First, the

Killing form κ(·, ·), extended complex linearly to gC and restricted to
√
−1 t, is positive

definite. We have κ(x, y) = 2ȟ(g)(x|y) for any x, y ∈
√
−1 t, where ȟ(g) is the dual Coxeter

number of g. We recall that the Coxeter number h(g) of g satisfies |∆| = rgh(g), where rg
is the rank of g [34], §V.6.2. Second, we have for any α ∈ ∆, y ∈ Λ∗, (α̌|α̌) = 4/(α|α) ∈ 2Z

and (α̌|y) = 2〈α, y〉/(α|α) ∈ Z. Consequently, for any x ∈ Λ∨, y ∈ Λ∗, we have

(x|x) ∈ 2Z, (x|y) ∈ Z. (A.3)

However, when both x, y ∈ Λ∗, (x|y) ∈ Q is not always an integer. We denote by mg the

smallest positive integer m so that m(x|x)/2 ∈ Z for all x ∈ Λ∗. Since Λ∗/Λ∨ is of order

|Z|, mg divides 2|Z|. We list mg together with other data for each type of g in table 1.

Finally, we relate the Coxeter and dual Coxeter numbers of g to those of Lg. If g is

simply laced, then Lg ∼= g and ȟ(g) = h(g). In general, we have [30]

h(Lg) = h(g), ȟ(g) + ȟ(Lg) = (1 + n−1
g )h(g). (A.4)

The first identity follows easily from |L∆| = |∆| while the second, from (see for example [30])

ȟ(g) = (rlong + n−1
g rshort)h(g)/rg (A.5)
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g Ar Br Cr Dr E6 E7 E8 F4 G2

ng 1 2 2 1 1 1 1 2 3

mg 2(r + 1)/(2, r) 1 2/(2, r) 8/(4, r) 3 4 1 1 1

h(g) r + 1 2r 2r r + 1 12 18 30 12 6

ȟ(g) r + 1 2r − 1 r + 1 2r − 2 12 18 30 9 4

Table 1: Important data of simple Lie algebras. Here (m,n) denotes the greatest common divisor

of two positive integers m and n.

and the same equality for Lg. Here rlong and rshort are the numbers of long, short simple

roots of g, respectively. We give a simple proof of (A.5). Using
∑

γ∈∆
καγκγβ = καβ , where

καβ = κ(α, β) for α, β ∈ ∆, the trace of the matrix (καβ)α,β∈∆ is
∑

α∈∆
καα = rg [35].

This implies that

|∆long| + n−1
g

|∆short| = rg ȟ(g), (A.6)

where ∆long and ∆short are the sets of long and short roots, respectively. Since

|∆long| = rlong h(g), |∆short| = rshort h(g) (A.7)

(see [34], exer. VI.1.20), the result follows.

B. The geometry of instanton numbers and discrete fluxes

Topologically, principal G-bundles P over a compact, orientable, smooth four-manifold X

are classified by p1(adP ) ∈ H4(X,Z) and w2(P ) = w2(adP ) ∈ H2(X,π1(G)). The former

determines the instanton number

k(P ) = −〈p1(adP ), [X]〉/2ȟ(g) ∈ Q (B.1)

and the latter is a discrete flux [11] and is the obstruction to lift P to a G̃-bundle. If G

itself is simply connected, then k(P ) ∈ Z and it is the only characteristic number of P . To

get the most general w2(P ), we take G = Gad. Since π1(Gad) = Z, we have a long exact

sequence

· · · → H2(X,Λ∨) → H2(X,Λ∗) → H2(X,Z) → H3(X,Λ∨) → · · · . (B.2)

We assume that all elements in H2(X,Z) can be lifted to H2(X,Λ∗). If w̃ ∈ H2(X,Λ∗) is

a lift of w2(P ) ∈ H2(X,Z), then there is a Tad-bundle Q → X whose first Chern class is

c1(Q) = w̃. We denote by Q−1 the Tad-bundle with c1(Q
−1) = −w̃. The bundles P and

Q−1 are both quotients of a G̃ ×Z T̃ -bundle over X constructed as follows. Let {Uα} be

a good open cover of X and let gαβ :Uα ∩ Uβ → Gad be the transition functions of P . If

we lift gαβ to g̃αβ :Uα ∩ Uβ → G̃, then the functions hαβγ = g̃αβ g̃βγ g̃γα:Uα ∩ Uβ ∩ Uγ → Z
form a Čech cocycle that represents w2(P ). Let tαβ:Uα ∩ Uβ → Tad be the transition

functions of Q. The fact that c1(Q) = w̃ is a lift of w2(P ) means that tαβ can be lifted

to t̃αβ:Uα ∩ Uβ → T̃ so that t̃αβ t̃βγ t̃γα = hαβγ on Uα ∩ Uβ ∩ Uγ . The G̃ ×Z T̃ -bundle is
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defined by the transition functions (gαβ , t
−1
αβ) modulo the diagonal Z-action on G̃ × T̃ . If

G = SO(n), then G̃×Z T̃ = SpinC(n) and the existence of a lift w̃ is equivalent to that of

a spinC structure on P .

Consider now the associated bundle ad′Q = Q ×Tad
g, where Tad acts on g by the

adjoint representation. The two vector bundles ad′Q and adP = P ×Gad
g have the same

fibre g and the same w2(ad
′Q) = w2(adP ). Consequently, they are isomorphic outside

one point in X and their instanton numbers differ by that of a bundle on S4, which is an

integer [10]. To calculate the instanton number of ad′Q, we note that

p1(ad
′Q) =

1

2
ch2(ad

′Q) =
1

2

∑

α∈∆

〈α, w̃〉2 = ȟ(g) (w̃|w̃). (B.3)

Here (·|·) on H2(X,Λ∗) is defined by the normalised inner product (·|·) on
√
−1 t and

the intersection form on H2(X,Z). Thus we have k(ad′Q) = −1
2(w̃|w̃). The number

1
2 (w̃|w̃) mod 1 is independent on the lift w̃ of w2(P ). In fact, if w̃′ is another lift, then

w̃′− w̃ ∈ H2(X,Λ∨) and 1
2(w̃′|w̃′)− 1

2 (w̃|w̃) = (w̃|w̃′− w̃)+ 1
2(w̃′ − w̃|w̃′− w̃) ∈ Z by (A.3).

So we have

k(P ) = −1

2
(w2(P )|w2(P )) mod 1. (B.4)

An important consequence of (B.4) is that for Gad-bundles, instanton numbers are not

necessarily integers [10]. For Gad = SU(n)/Zn and w2(P ) = x⊗ λ̌1, where x ∈ H2(X,Zn)

and λ̌1 is the fundamental (and miniscule) coweight of g that corresponds to the defining

representation, we have 1
2 (w2(P )|w2(P )) = x2(n−1)/2n mod 1, which is (3.9) (when n = 2)

and (3.13) of [10]. Here x2 = 〈x ∪ x, [X]〉 and x2(n− 1)/2n is well-defined modulo 1. The

generalisation to arbitrary simply laced groups is straightforward [10]. With the proper

normalisation (·|·) on
√
−1 t, we have (B.4) for non-simply laced Lie groups as well. Since

it is possible to glue instantons [36] on S4 to X without affecting w2, one can exhaust

all numbers satisfying (B.4) by choosing various Gad-bundles with a fixed w2. However, a

non-trivial w2(P ) is not always reflected by a fractional instanton number. For each type

of simple Lie algebra g, the number mg in appendix A is the smallest positive integer m

such that mk(P ) is always an integer. It can be improved to mg/2 if X is spin and mg is

even.

We consider the tangent bundle TX. The second Stiefel-Whitney class w2 = w2(X) =

w2(TX) ∈ H2(X,Z2) always lifts to H2(X,Z). This means that X is always spinC; X is

spin if and only if w2 = 0. The Wu formula is

x2 = x · w2 mod 2, (B.5)

where for x, y ∈ H2(X,Z2), x · y = 〈x ∪ y, [X]〉 is defined modulo 2. If x lifts to H2(X,Z),

then x2 = x · x is defined modulo 4. Moreover, w2
2 is defined modulo 8. It is a classical

result [37, 38] (see [39, 40] for further developments) that the signature σ = σ(X) of X

satisfies

σ = w2
2 mod 8. (B.6)
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Finally, let Mk,v = Mk,v(X) be the moduli space of anti-self-dual connections on a

G-bundle P → X with instanton number k and discrete flux v. Its dimension is [41]

dimMk,v = −2 〈p1(adP ), [X]〉 − 1

2
dimG (χ+ σ), (B.7)

where χ = χ(X) is the Euler number of X. Since χ+ σ is even for any four-manifold and

since dimG = rg mod 2, the dimension (B.7) is even if and only if

rg (χ+ σ) = 0 mod 4. (B.8)
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